AOPS

Introduction to Number Theory

 Syllabus

Syllabus

1 Integers The Basics

    1.1 Introduction          

    1.2 Making Integers Out of Integers

    1.3 Integer Multiples        

    1.4 Divisibility of Integers     

    1.5 Divisors             

    1.6 Using Divisors         

    1.7 Mathematical Symbols    

    1.8 Summary            


2 Primes and Composites 

    2.1 Introduction         

    2.2 Primes and Composites 

    2.3 Identifying Primes I     

    2.4 Identifying Primes II     

    2.5 Summary           


3 Multiples and Divisors

    3.1 Introduction

    3.2 Common Divisors  

    3.3 Greatest Common Divisors

    3.4 Common Multiples          

    3.5 Remainders               

    3.6 Multiples, Divisors, and Arithmetic 

    3.7 The Euclidean Algorithm       

    3.8 Summary                


4 Prime Factorization

    4.1 Introduction                 

    4.2 Factor Trees                   

    4.3 Factorization and Multiples         

    4.4 Factorization and Dibisors         

    4.5 Rational Numbers and Lowest Terms   

    4.6 Prime Factorization and Problem Solving

    4.7 Relationships Between LCMs and GCDs 

    4.8 Summary                   


5 Divisor Problems

    5.1 Introduction 

    5.2 Counting Divisors 

    5.3 Divisor Counting Problems 

    5.4 Divisor Products 

    5.5 Summary         


6 Special Numbers

    6.1 Introduction                 

    6.2 Some Special Primes             

    6.3 Factorials, Exponents and Divisibility   

    6.4 Perfect Abundant and Deficient Numbers

    6.5 Palindromes                 

    6.6 Summary                    


7 Algebra With Integers

    7.1 Introduction          

    7.2 Problems                    

    7.3 Summary                   


8 Base Numbers

    8.1 Introduction                  

    8.2 Counting in Bundles

    8.3 BaseNumbers                 

    8.4 Base Number Digits              

    8.5 Converting Integers Between Bases    

    8.6 Unusual Base Number Problems

    8.7 Summary                     


9 Base Number Arithmetic 

    9.1 Introduction                   

    9.2 Base Number Addition            

    9.3 Base Number Subtraction           

    9.4 Base Number Multiplication         

    9.5 BaseNumber Division and Divisibility  

    9.6 Summary                    


10 Units Digits

    10.1 Introduction

    10.2 Units Digits in Arithmetic           

    10.3 Base Number Units Digits          

    10.4 Unit Digits Everywhere!           

    10.5 Summary                    


11 Decimals and Fractions

    11.1 Introduction                  

    11.2 Terminating Decimals             

    11.3 Repeating Decimals              

    11.4 Converting Decimals to Fractions      

    11.5 BaseNumbersandDecimaquivalents 

    11.6 Summary                    


12 Introduction toModular Arithmetic

    12.1 Introduction                            

    12.2 Congruence                              

    12.3 Residues                

    12.4 Addition and Subtraction                      

    12.5 Multiplication and Exponentiation                

    12.6 Patterns and Exploration                     

    12.7 Summary                              


13 Divisibility Rules

    13.1 Introduction                            

    13.2 Divisibility Rules                          

    13.3 Divisibility Rules With Algebra                 

    13.4 Summary                              


14 Linear Congruences

    14.1 Introduction                            

    14.2 Modular Inverses and Simple Linear Congruences      

    14.3 Solving Linear Congruences                   

    14.4 Systems of Linear Congruences                 

    14.5 Summary                              


15 Number Sense

    15.1 Introduction                            

    15.2 Familiar Factors and Divisibility                 

    15.3 Algebraic Methods of Arithmetic                

    15.4 Useful Forms of Numbers                    

    15.5 Simplicity                     

    15.6 Summary