AOPS
Introduction to Number Theory
Syllabus
课程大纲 Syllabus
1 Integers The Basics
1.1 Introduction
1.2 Making Integers Out of Integers
1.3 Integer Multiples
1.4 Divisibility of Integers
1.5 Divisors
1.6 Using Divisors
1.7 Mathematical Symbols
1.8 Summary
2 Primes and Composites
2.1 Introduction
2.2 Primes and Composites
2.3 Identifying Primes I
2.4 Identifying Primes II
2.5 Summary
3 Multiples and Divisors
3.1 Introduction
3.2 Common Divisors
3.3 Greatest Common Divisors
3.4 Common Multiples
3.5 Remainders
3.6 Multiples, Divisors, and Arithmetic
3.7 The Euclidean Algorithm
3.8 Summary
4 Prime Factorization
4.1 Introduction
4.2 Factor Trees
4.3 Factorization and Multiples
4.4 Factorization and Dibisors
4.5 Rational Numbers and Lowest Terms
4.6 Prime Factorization and Problem Solving
4.7 Relationships Between LCMs and GCDs
4.8 Summary
5 Divisor Problems
5.1 Introduction
5.2 Counting Divisors
5.3 Divisor Counting Problems
5.4 Divisor Products
5.5 Summary
6 Special Numbers
6.1 Introduction
6.2 Some Special Primes
6.3 Factorials, Exponents and Divisibility
6.4 Perfect Abundant and Deficient Numbers
6.5 Palindromes
6.6 Summary
7 Algebra With Integers
7.1 Introduction
7.2 Problems
7.3 Summary
8 Base Numbers
8.1 Introduction
8.2 Counting in Bundles
8.3 BaseNumbers
8.4 Base Number Digits
8.5 Converting Integers Between Bases
8.6 Unusual Base Number Problems
8.7 Summary
9 Base Number Arithmetic
9.1 Introduction
9.2 Base Number Addition
9.3 Base Number Subtraction
9.4 Base Number Multiplication
9.5 BaseNumber Division and Divisibility
9.6 Summary
10 Units Digits
10.1 Introduction
10.2 Units Digits in Arithmetic
10.3 Base Number Units Digits
10.4 Unit Digits Everywhere!
10.5 Summary
11 Decimals and Fractions
11.1 Introduction
11.2 Terminating Decimals
11.3 Repeating Decimals
11.4 Converting Decimals to Fractions
11.5 BaseNumbersandDecimaquivalents
11.6 Summary
12 Introduction toModular Arithmetic
12.1 Introduction
12.2 Congruence
12.3 Residues
12.4 Addition and Subtraction
12.5 Multiplication and Exponentiation
12.6 Patterns and Exploration
12.7 Summary
13 Divisibility Rules
13.1 Introduction
13.2 Divisibility Rules
13.3 Divisibility Rules With Algebra
13.4 Summary
14 Linear Congruences
14.1 Introduction
14.2 Modular Inverses and Simple Linear Congruences
14.3 Solving Linear Congruences
14.4 Systems of Linear Congruences
14.5 Summary
15 Number Sense
15.1 Introduction
15.2 Familiar Factors and Divisibility
15.3 Algebraic Methods of Arithmetic
15.4 Useful Forms of Numbers
15.5 Simplicity
15.6 Summary